
A Software Control Architecture based on Active Perception
for Mobile Robotics1

R. Vázquez-Martín*; J. Martinez**; J.C. del Toro*; P. Núñez* & F. Sandoval*

*Dpto. de Tecnología Electrónica, ** Dpto. Lenguajes y Ciencias de la Computación
 University of Málaga, Málaga (Spain)

{rvmartin,jmcruz,deltoro,pmnt,sandoval}@uma.es

Abstract: - The conceptual architecture of a robot is the organization of its actuation, perception and processing
capabilities with the aim of generating a whole set of autonomous behaviours. In order to accomplish a task,
autonomous mobile robots must be capable of perceiving its environment and maintaining an exact model of the
world. Usually, a robot is equipped with several sensor systems to gather information from the environment and
update this model. In this paper, we present a control architecture based on perceptions, which is specified from
the sensors up to the highest level. The control architecture scheme follows the hybrid guidelines and maintains
an environment representation where the highest level is built from perception outcomes. The system is
composed of reactive and deliberative layers. In the reactive layer perceptions are organized into a set of
modules divided into different levels of sensory representation: primitives, such as localization or landmark
detection, and compound perceptions, such as feature maps (local SLAM). The other part of the reactive layer is
the action module, where a set of behaviours provide the robot with navigation capabilities. Finally, the
deliberative layer builds a symbolic environmental representation (topological map) and integrates suitable
algorithms to accomplish the execution of a task.

Key Words: - autonomous robot, hybrid control architecture, active perception, framework, design patterns

1 This work has been partially granted by the Spanish Ministry of Education and Science: TIN2004-
05961.

1 Introduction
An autonomous robot can be defined as a machine
entity that uses sensors to perceive its surroundings
and acts in that environment by using its actuators. In
order to achieve autonomous behaviour in an efficient
and safe way, not only is it necessary to develop the
appropriate capacities (perception, reasoning and
action), but also to integrate them inside the robot in
an efficient and robust way. Perception is especially
significant if the environment is dynamic and
unknown and only partial and imprecise information
is available. For these systems, perception can be
defined as the set of functions that obtain an abstract
representation of the environment, directly usable by
users or by the robot itself and the software that
makes it autonomous. Therefore, perception and
autonomy are tightly coupled: autonomy is possible
thanks to the understanding, modelling and
implementation of behaviours, based on a perception
of the environment. Understanding of representations
is built on top of these perceptions [8].
A robot control architecture can be defined as the
overall organization of the different data processing
modules in the robot and it controls the robot’s
interaction with the environment. The first robot
control architectures were greatly influenced by

classical artificial intelligence and they put the
emphasis on symbolic representation of the
environment and planning. These deliberative or
hierarchical control architectures relied on the sense-
model-plan-act paradigm (SMPA) and were unable to
react in dynamic environments, because they
depended heavily on the environment model. The
intelligence in these control architectures originated
from the designer and the robot itself had little or no
autonomy. On the other hand, behaviour-based
control [2] proposes the decomposition of the
architecture into a collection of processes or rules that
meet or accomplish several objectives. A behaviour-
based approach considers intelligence to be
demonstrated through meaningful and purposeful
action in a given environment. Still, systems based on
purely reactive behaviours, with little or no
knowledge of the world, do not perform well when
carrying out complex tasks. To achieve better
performance, hybrid control architectures combine
deliberative and reactive modules [1]. Thus, hybrid
approaches try to make planning subordinate to
reactivity and yet use it to guide reactivity at a high
level. In order to bridge the gap between the
deliberative and the reactive layers, these control
architectures have a third layer, commonly called the

task execution layer or sequencer. As has been
previously mentioned, control architectures focused
on behaviours or schemas [2] do not reach the desired
level of autonomy. Besides, most of the hybrid
architectures balance control toward the deliberative
or the reactive layer.
This paper proposes a hybrid robot architecture that
allows perceptual processes to control themselves and
achieve more balanced control between reactive and
deliberative layers thanks to the task execution
module. In this approach the deliberative and the task
execution layers are fused into one single layer. Thus,
the architecture has been divided into two layers, one
for perception generation and reactive control
(reactive layer), and another one for deliberative
algorithms and task execution (deliberative layer).
The reactive layer is organised as a behaviour-based
system where perceptions are hierarchically
organised and they autonomously provide low-level
and high-level information. Finally, the deliberative
layer understands commands given by the user and
controls the topological map generation. This paper
has been organized as follows: Section 2 contains a
brief description of related work. Section 3 presents
the proposed hybrid architecture. Section 4 describes
an object-oriented framework that has been
developed to support the architecture. Finally, section
5 summarises conclusions and future work.

2 Related work
It is widely recognised that hybrid architectures are
the most efficient ones, and there is general
agreement on basic architectural principles [12].

Thus, the layout of the first implementation of a
hybrid approach, the AuRA architecture [1], matches
very well the three-layer decomposition of the typical
hybrid architecture. AuRA was specifically designed
for operation on a platform that carries out
navigational tasks and has a hierarchical system for
mission planning, a plan sequencer and a behaviour-
based reactive layer. The mission planning layer is
only activated when any contingency arises during
the reactive layer execution. The XAVIER [15] and
RHINO systems [3], developed later at CMU and
Bonn University, respectively, follow the same
guidelines.
Hybrid architectures that also correspond very well to
the three layer decomposition are the 3T [5], the
BERRA and the LAAS [6]. These architectures
present well-defined deliberative, task execution and
reactive layers. Perceptions are mainly grouped in the
reactive layer. Therefore, they are directly controlled
by the highest level of the architecture but not the
other way around. That is, the response of perception
modules is taken into account only when the
deliberative layer decides.
It is worth noting that commercial platforms do not
provide control architectures to achieve the desired
level of autonomy [12]. For instance, Saphira is not
organised in terms of layers. It represents the robot
environment in a symbolic frame called Local
Perceptual Space (LPS) and sends this information to
each module in the architecture, regardless of their
temporal or data abstraction level. Besides, there is
no route planning, which means that the robot can
only navigate to a point immediately accessible from

Fig. 1. Overview of the proposed architecture

the current position. Another example of a
commercial architecture with no real deliberative
layer is Teambots. Recently, ActivMedia Robotics
has developed the ActivMedia Robotics Interface for
Application (ARIA). This object-oriented software
represents an important tool that takes advantage of
its hardware abstraction and its capabilities to run
cooperative behaviours.
In general, hardware abstraction is well handled in
these architectures, but there are no interactive tasks,
meaning there is only a low level of autonomy.
The architecture described in this paper is built over
ARIA. In order to achieve the desired autonomy, we
have to design new abstractions for high level
concepts such as those required by reactive and
deliberative layers. Thus, through ARIA, sensors
supply their data to modules which extract higher
order data. This information will be inserted into
more elaborate perceptions by using an active
perception strategy, which will be described in the
next section. Therefore, the proposed architecture
presents well-defined deliberative and reactive layers,
which are in some way portable to other platforms.

3 Components of the architecture
The proposed system is based on perceptions, where
stimuli are the key issue in the robot behaviour. In
order to achieve autonomous behaviour in a dynamic
environment, while the robot is carrying out a
specific task, it must be capable of perceiving its
environment and reacting to changes. There are
different ways to implement the perception
mechanism, based on the environment link, such as
for example anchoring [14].
The architecture (see Fig. 1) is organized from the
sensors up to the deliberative level. Perceptions are
split into a set of modules that represent different
stimulus and are organized in two levels: primitive
and compound perceptions. The reactive layer is
behaviour based, consisting of separate behaviours,
where each one is designated a specific non-complex
task in order to reach a target avoiding unexpected
obstacles. The deliberative layer generates a symbolic
environment representation (topological map), which
is built from the perceptions outcome. On this layer,
one part is dedicated to building this representation
while the other two parts maintain the targets for
accomplishing the task. Both layers have been
developed following a new object-oriented
framework in C++ that covers the functionality and
interactions needed by each module. This framework
is heavily based on common design patterns [4], and
will be introduced in section 4.

Fig. 2. Details of the mobile platform

Regarding hardware, our platform is based on a
Pioneer AT from ActivMedia, equipped with two
cameras mounted on a Direct Perception’s Pan and
Tilt Unit (PTU), eight front sonar sensors, a GPS and
a compass. It includes two embedded PCs, one of
which is exclusively dedicated to vision purposes.
Experiments have shown that this platform can work
correctly in indoor environments [16] or outdoors
[17][19]. Fig. 1 shows a schematic layout of the
platform.
The following subsections describe the main
characteristics of the layers in the proposed
architecture. We focus on the details of the perception
module, which has been designed to work in an
autonomous and active way. From a functional point
of view, the other part of the reactive layer (called
action module in Fig. 1) and the deliberative layer are
more similar to those present in other architectures,
so they will be only briefly described.

3.1 Active perception module
To model perception as an active process means that
perception is goal-directed and context-sensitive at
every stage, including at the initial processing of
input sensory data. Thus, active perception processes
all data in a goal-directed manner and it greatly
decreases the computational cost of perception
because the system applies only specific
computational resources to chosen parts of the
sensory data. Therefore, active perception requires
forming sensory plans from the information gathered
by the robot from its environment, and transforms
perception into a problem-solving process. This
permits the robot to apply its learning capabilities to
its perceptions. In order to perceive actively, the
proposed architecture has access to lower-level
sensory and motor information. Thus, it implements
modules for landmark acquisition and localization
and map building in indoor or outdoor environments.

Fig. 3. Landmarks detected in different environments
with: a-d) the visual attention mechanism, and e-f)
line-segment/corner extraction (laser scan)

A. Autonomous landmark detection
The perception primitives (the lowest level of sensory
representation) are composed of the localization
module and two landmark detector modules. The
line-segment map and the attention mechanism are
based on landmark detection. These landmarks are
the way to model the robot environment and are the
key point for the feature maps built into the higher
level of perception.
The type of landmarks depends on the sensor and the
process used to acquire them. In [17] a visual
landmark acquisition is presented. The proposed
attention mechanism integrates bottom-up and top-
down processing, selecting salient regions by
computing different image features. Fig. 3a-d shows
several examples of autonomous landmark
acquisition. It should be noted that landmark
detection is correctly achieved in indoor and outdoor
environments.
 Indoor environments present regular geometry (walls,
corners, doors, etc). In order to take advantage of this
information range bearing sensors can be used to
extract these environmental features. Line-segment
maps can be extracted from sonar [13] and laser scans
[10]. Besides, due to the higher precision of the laser
range-finder, it is possible to use a curvature based
method to extract corners [10]. Figs. 3e-f present two
scan data collected in an indoor environment. The
laser scan range readings have been presented above
the real layout.

B. Local Simultaneous Localization and Mapping
A mobile robot that has to embed autonomous motion
abilities must necessarily be endowed with
localization capabilities. In order to provide robust
localization, an autonomous robot must integrate
several methods, each of them fulfilling a particular
requirement [8]. In our case, odometry computes
positions thanks to the integration of the robot
wheels’ velocities. This position measure is prone to
unbounded drifting, due to slippage and mechanical
imprecision which provoke accumulative errors.
These problems are even worse in outdoor
environments, where the ground is not necessarily
flat, but usually rough, and paths may be quite long.
To obtain an accurate estimation of the robot pose, a
GPS is used to provide an outdoor absolute position
and a compass is used to refine the orientation pose
[19]. GPS provides good accuracy in the position, but
its availability depends on the environmental
conditions (satellite signals can be blocked by
buildings, trees, sources of electric and magnetic
fields, etc) and it can only be used outdoors. In order
to achieve an accurate and continuous estimation of
the robot’s position, a simultaneous localization and

map building process (SLAM) [18] is used. Vision is
employed to provide indoor and outdoor landmarks
while sonar or laser sensors provide only indoor ones.
The SLAM process is based on a features map. This
map is built with the information provided by the
corner-extraction/line-segment module or visual
attention mechanism. The size of the feature map
increases with the number of observations (2N+3). In
large and/or dense environments these maps can
reach a huge size, which means high storage and
computational cost. In order to avoid these problems,
a partial or local SLAM is used. Partial SLAM is
based on removing from the state all the landmarks
outside a local map around the current robot pose.
The size of this local map is set based on the sensory
horizon of the robot. Partial SLAM provides the robot
pose and local landmark localization while the
solution for the large-scale space representation and
the closing of large loops (large-scale structural
ambiguity) are postponed to the topological map.

Fig. 4. a) Full and b) partial SLAM

Fig. 4 illustrates the difference between full SLAM
(Fig. 4a) and partial SLAM (Fig. 4b). It can be
observed that the uncertainty (red ellipses) in the
vehicle pose and the landmark locations are higher in
partial SLAM, due to the reduction when previously
detected landmarks are observed again. In the case of
partial SLAM this fact is less likely, but the
uncertainty does not increase significantly.
Our approach implements two SLAM algorithms, one
for indoor environments and another one for
outdoors. The correct reception of GPS signals and
the obstacle density are employed to detect indoor or
outdoor environments. The SLAM manager shown in
Fig. 1 decides which SLAM algorithm is more
suitable to the robot environment.

3.2 Reactive navigation
As explained before, the reactive layer is split into
several modules. The action module is implemented
as behaviours and their outcomes are combined in
order to select the desired action of the robot.
Firstly, an action called safe navigation stops the
robot when the motors stall (there are no bumpers
available to detect collisions). In order to navigate in
dynamic environments, a behaviour that avoids
obstacles is needed. Although different techniques
can be used, the Obstacle Restriction Method has
been implemented [9], because it obtains better
results in dynamic environments. This behaviour
maintains the goals that are passed by the deliberative
layer and the wandering behaviour is used when there
are no specific goals and the robot is exploring the
environment.

3.3 Deliberative and task execution layer
Metric maps are not suitable for representing large-
scale environments but provide a high degree of local
accuracy and quantify uncertainty. On the other hand,
topological maps provide a natural division of the
environment, low computation and storage, large-
scale connectivity and consistency. The strengths of
topological and metric maps are complementary.
Thus, many approaches that combine both paradigms
exist [7]. These maps can be considered as
topological representations based on information
from local or global metric maps.
Local metrical mapping is based on the partial
SLAM, which provides metric information on the
robot’s surroundings. The topological map describes
the environment with a set of nodes (places) linked
by edges (connecting paths). These nodes represent
places that satisfy several conditions, for example
areas with a high density of landmarks (SLAM) or
interesting views (based on image features). The
selection of these conditions is a key issue, due to

Fig. 5. Parts of the UML Perception module

the consistency of the map building process. At this
level of representation the navigation problem is
solved with a path-planning method to find a path in
a graph, in this case the A* algorithm.

4 Implementation details
The architecture proposed in this paper has been
implemented using a new object-oriented framework
in C++. In the design of the framework we have
taken into account all the high level abstractions
needed by the reactive and deliberative layers. For
instance, Fig. 5 depicts part of a UML class diagram
[11] corresponding to the active perception module,
which provides the required infrastructure to
encapsulate and manage different sensor
measurements. The abstract Perceptor class is the
base class for all perceptors (primitive and
compound) in the framework. It includes basic
mechanisms to get data from the robot’s sensors and
to register PerceptorListeners. This are subscribers
that will be warned when new data is available. Fig. 5
shows the relationship between Perceptors and
PerceptorListeners though a DataEvent object, which
contains appropriate references to the caller and to
the data available. Therefore, perceptions can be
hierarchically organized, providing low-level and
high-level information. Regarding specific
perceptors, such as the wrappers for localization
(GPS), line segment/corner extraction (laser), or
SLAM, these are all singleton objects which have
only one active instance in the system. The role of the
SLAMPerceptorManager class also shown in the
figure is that of deciding what the robot environment
is, according to the results obtained by inspecting
SLAMIndoors and SLAMOutdoors perceptor objects.
Following the recommendations in our framework,
complete use cases are built with few lines of code, as
shown in fig. 6, where it is demonstrated how easily
the hierarchical connection of perceptors is
performed. First of all, the hardware-based
LaserPerceptor and GPSPerceptor objects

int main(int argc, char *argv[])
{

 LaserPerceptor* lp = LaserPerceptor::getInstance();

 GPSPerceptor *gpsp = GPSPerceptor::getInstance();

 //registering the hierarchy: laser for indoors

 SLAMIndoorsPerceptor slamindoors;
 lp->connect(&slamindoors);

//registering the hierarchy: GPS for outdoors

 SLAMOutdoorsPerceptor slamoutdoors;
 gpsp->connect(&slamoutdoors);

//The manager will decide the appropriate environment

 SLAMPerceptorManager slam_manager;

 slamindoors.connect(&slam_manager);
 slamoutdoors.connect(&slam_manager);

 //Robot execution main loop

 Robot::getInstance()->run(argc, argv);

 return 0;
}

Fig. 6. A simple use case of the perception module

(wrappers for available laser and GPS) are connected
to their corresponding SLAM algorithms. Note that
these algorithms for outdoors and indoors locations
may be possibly executing in separate threads (also
decoupled of the robot execution main thread).
Regarding hardware-based perceptors, they are
already available in the ARIA library. Our
architecture provides the relationship among these
primary (or basic) perceptors and a running Robot
instance. For instance, code in fig. 7 shows the
behaviour of the LaserPerceptor class. The
connectToRobot method will be called from the
Robot singleton instance in order to encapsulate the
low-level procedures followed by ARIA. One of the
most important tasks is to register a callback function
to be executed when new laser data is available.
Therefore, the newData method is responsible of
notifying these data to those perceptors which were
previously subscribed.
Another important concept in the framework is the
possibility of having distributed perceptors. The
RemotePerceptor class is prepared to act as a server

LaserPerceptor::LaserPerceptor()
{
 //wraps the ARIA laser
 laser = new ArSick();
 laser->configure(

false,true,false,ArSick::BAUD38400,
ArSick::DEGREES180,
ArSick::INCREMENT_HALF);

}

void LaserPerceptor::connectToRobot(Robot *robot)
{
 functor1 = new ArFunctorC <LaserPerceptor>
 (this,&LaserPerceptor::newData);
 laser->addDataCB(functor1,ArListPos::FIRST);
 robot->connector.setupLaser(laser);
 laser->runAsync();
 Logger::log("laser setup ok");

...

 if (laser->getDegrees()==ArSick::DEGREES180)
 Logger::log("degree Range: 180º");
 else

Logger::log("degree Range: 100º");
 if (laser->getIncrement()==ArSick::INCREMENT_ONE)
 Logger:log("1º deg inc");
 else

Logger::log("0.5 deg inc");
}

/*
The newData callback function is executed when new
data from laser is available in ARIA
*/
void LaserPerceptor::newData()
{

 std::list<ArSensorReading *>::const_iterator myit;

 static ArTime mylast;
 ArTime mynow;
 long int timeelapsed;

 mynow=laser->getLastReadingTime();
 timeelapsed=mylast.mSecSince(mynow);

 if (timeelapsed > 0){
 mylast=mynow;
 readings = laser->getRawReadings();
 DataEvent devent(this);
 sig_subscribers(devent);
 }
}

LaserPerceptor::~LaserPerceptor()
{
 laser->remDataCB(functor1);
 delete functor1;
 delete laser;
}

Fig. 7. The LaserPerceptor behaviour

Fig. 8. Class diagram of Deliberators and Actions

that gets network data using TCP/IP sockets. In our
mobile platform, it is very useful to offer load
balancing among different PCs. With our approach
(see Fig. 1) one processor is responsible for
computing image inputs from cameras, a resource-
expensive task, whereas the other processor contains
the deliberative and reactive layers built over ARIA.
Therefore, the image data from cameras is
reconverted to regions of interest, which are sent to a
specific ImagePerceptor derived from a
RemotePerceptor, giving objects in the architecture
the possibility of accessing those data with the
minimum delay (by using UDP datagram sockets).
 Although this paper has focused on the perception
part of the control architecture, we are now
implementing the functionality requested by the
deliberative layer. Fig. 8 shows the features available
in the framework for organizing high level tasks
through so-called Deliberator objects. Their default
implementation contains state machines to represent
the behaviour corresponding to a deliberative task.
State, Transition and an EventQueue are classes
which compose each state machine. Transition (and
State) classes may contain ordered sequences of
Action objects, which are executed only when they
are active, that is, when a specific DataEvent has
been received. Regarding Action classes, they
implement the command pattern, acting also as a
wrapper for platform-dependent actions, like the ones
available within the ARIA platform, as shown in Fig.
6.
The design of this framework provides clear
extension options for developers in our group so that

they may provide their own implementations of new
Perceptors, Actions and Deliberators as needed.

5 Conclusions and future work
This paper describes a hybrid architecture for a
mobile robot that allows perceptual processes to
control themselves and achieve more balanced
control between reactive and deliberative layers. We
have introduced its main components focusing on the
active perception module, which has a critical role
with respect to robot operation. It provides a
hierarchy of autonomous perceptions that convert
low-level information into high-level data. We have
also presented a framework for implementing the
functionality needed by reactive and deliberative
layers. The aim of this framework is not only to
reduce the development time but also to provide
platform-independent high level abstractions of the
components in the architecture. Work in the
immediate future consists of obtaining new
Perceptors for the vision mechanism, in order to
recognize nodes in a topological map. This will
constitute the basic support for an ongoing path-
planning task, which will improve the implemented
algorithm.

References:
[1] Arkin, R. Behaviour based robotics, MIT Press,

1998.
[2] Brooks, R. A robust layered control system for a

mobile robot. IEEE Journal of Robotics and
Automation, Vol. RA-2, No. 1, 1986, pp.14-23.

[3] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox,
T. Hofmann, F. Schneider, J. Strikos, & S. Thrun.
The mobile robot RHINO. AI Magazine, Vol. 16,
No. 2, 1995, pp. 31–38.

[4] Gamma, E.; Helm, H.; Johnson, R. & Vlissides, J.
Design Patterns. Addison-Wesley, 1995.

[5] Gat, E. On Three-Layer Architectures. In
Artificial Intelligence and Mobile Robots,
MIT/AAAI Press, 1997, pp. 195-210.

[6] Ingrand, F. & Py, F. An Execution Control
System for Autonomous Robots. Proc. of the
IEEE International Conference on Robotics and
Automation, 2002, pp. 1333-1338.

[7] Kuipers, B.; Modayil, J.; Beeson, P.; MacMahon,
M. & Savelli, F. Local Metrical and Global
Topological Maps in the Hybrid Spatial Semantic
Hierarchy. Proc. of IEEE Int. Conf. on Robotics
and Automation, 2004, pp. 4845-4851.

[8] Mallet, A. Localisation d'un robot mobile
autonome en environnements naturels. PhD
thesis, Institut National Polytechnique de
Toulouse, July 2001.

[9] Minguez, J. The Obstacle-Restriction Method
(ORM) for Robot Obstacle Avoidance in Difficult
Environments. Proc. of the IEEE Int. Conf. on
Intelligent Robots and Systems, 2005, pp.3706-
3712.

[10] Nuñez, P., Vázquez-Martín, R., Bandera, A.,
Sandoval, F. Feature Extraction from Laser Scan
Data Based on Curvature Estimation for Mobile
Robotics. IEEE Conference on Robotics and
Automation, 2006. pp. 1167-1172.

[11] Object Management Group. Unified Modelling
Language Specification, 1.5. Available at
http://www.omg.org, Accesed: 2005-07-07

[12] Orebäck, A. & Christensen, H. I. Evaluation of
architectures for mobile robotics. Autonomous
Robots, 14, 2003, pp. 33-49.

[13] Pérez-Lorenzo, J.M.; Vázquez-Martín, R.,
Núñez, P.; Pérez, E.J. & Sandoval, F. A Hough-
based method for concurrent mapping and
localization in indoor environments. Proc. of the
IEEE Conf. on Robotics, Automation and
Mechatronics, 2, 2004, pp. 840-845.

[14] Saffiotti, A. & LeBlanc, K. Active perceptual
anchoring of robot behaviour in a dynamic
environment. Proc. of the IEEE Int. Conf. on
Robotics and Automation, 200, pp. 3796-3802.

[15] Simmons, R. G. (1994), Structured Control for
Autonomous Robots. IEEE Trans. on Robotics
and Automation, Vol. 10, No. 1, 1994, pp. 34-43.

[16] Urdiales, C.; Pérez, E.J.; Sandoval, F. &
Vázquez-Salceda, J. A hybrid architecture for
autonomous navigation using a CBR reactive
layer, Proc. of the IEEE/WIC Int. Conf. on
Intelligent Agent Technology, 2003, pp. 225-232

[17] Vázquez-Martín, R.; del Toro, J.C.; Bandera, A.
& Sandoval, F. Data and model-driven attention
mechanism for autonomous visual landmark
acquisition, Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2005, pp. 3383-3388.

[18] Vázquez-Martín, R., Nuñez, P., del Toro, J.C,
Bandera, A., Sandoval, F. Adaptive Observation
Covariance for EKF-SLAM in Indoor
Environments using Laser Data. 13th IEEE
Mediterranean Electrotechnical Conference, 2006,
pp. 445-448.

[19] Vázquez-Martín, R.; Pérez, E.J.; Urdiales, C.;
del Toro, J.C. & Sandoval, F. Hybrid navigation
guidance for intelligent mobiles. Proc. of the
IEEE Int. Conf. on Vehicular Technology, 2006.

