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Abstract: - The conceptual architecture of a robot is the organization of its actuation, perception and processing 
capabilities with the aim of generating a whole set of autonomous behaviours. In order to accomplish a task, 
autonomous mobile robots must be capable of perceiving its environment and maintaining an exact model of the 
world. Usually, a robot is equipped with several sensor systems to gather information from the environment and 
update this model. In this paper, we present a control architecture based on perceptions, which is specified from 
the sensors up to the highest level. The control architecture scheme follows the hybrid guidelines and maintains 
an environment representation where the highest level is built from perception outcomes. The system is 
composed of reactive and deliberative layers. In the reactive layer perceptions are organized into a set of 
modules divided into different levels of sensory representation: primitives, such as localization or landmark 
detection, and compound perceptions, such as feature maps (local SLAM). The other part of the reactive layer is 
the action module, where a set of behaviours provide the robot with navigation capabilities. Finally, the 
deliberative layer builds a symbolic environmental representation (topological map) and integrates suitable 
algorithms to accomplish the execution of a task. 
 
Key Words: - autonomous robot, hybrid control architecture, active perception, framework, design patterns 
 

                                                           
1 This work has been partially granted by the Spanish Ministry of Education and Science: TIN2004-
05961. 

1   Introduction 
An autonomous robot can be defined as a machine 
entity that uses sensors to perceive its surroundings 
and acts in that environment by using its actuators. In 
order to achieve autonomous behaviour in an efficient 
and safe way, not only is it necessary to develop the 
appropriate capacities (perception, reasoning and 
action), but also to integrate them inside the robot in 
an efficient and robust way. Perception is especially 
significant if the environment is dynamic and 
unknown and only partial and imprecise information 
is available. For these systems, perception can be 
defined as the set of functions that obtain an abstract 
representation of the environment, directly usable by 
users or by the robot itself and the software that 
makes it autonomous. Therefore, perception and 
autonomy are tightly coupled: autonomy is possible 
thanks to the understanding, modelling and 
implementation of behaviours, based on a perception 
of the environment. Understanding of representations 
is built on top of these perceptions [8].  
A robot control architecture can be defined as the 
overall organization of the different data processing 
modules in the robot and it controls the robot’s 
interaction with the environment. The first robot 
control architectures were greatly influenced by 

classical artificial intelligence and they put the 
emphasis on symbolic representation of the 
environment and planning. These deliberative or 
hierarchical control architectures relied on the sense-
model-plan-act paradigm (SMPA) and were unable to 
react in dynamic environments, because they 
depended heavily on the environment model. The 
intelligence in these control architectures originated 
from the designer and the robot itself had little or no 
autonomy. On the other hand, behaviour-based 
control [2] proposes the decomposition of the 
architecture into a collection of processes or rules that 
meet or accomplish several objectives. A behaviour-
based approach considers intelligence to be 
demonstrated through meaningful and purposeful 
action in a given environment. Still, systems based on 
purely reactive behaviours, with little or no 
knowledge of the world, do not perform well when 
carrying out complex tasks. To achieve better 
performance, hybrid control architectures combine 
deliberative and reactive modules [1]. Thus, hybrid 
approaches try to make planning subordinate to 
reactivity and yet use it to guide reactivity at a high 
level. In order to bridge the gap between the 
deliberative and the reactive layers, these control 
architectures have a third layer, commonly called the 



task execution layer or sequencer. As has been 
previously mentioned, control architectures focused 
on behaviours or schemas [2] do not reach the desired 
level of autonomy. Besides, most of the hybrid 
architectures balance control toward the deliberative 
or the reactive layer.  
This paper proposes a hybrid robot architecture that 
allows perceptual processes to control themselves and 
achieve more balanced control between reactive and 
deliberative layers thanks to the task execution 
module. In this approach the deliberative and the task 
execution layers are fused into one single layer. Thus, 
the architecture has been divided into two layers, one 
for perception generation and reactive control 
(reactive layer), and another one for deliberative 
algorithms and task execution (deliberative layer). 
The reactive layer is organised as a behaviour-based 
system where perceptions are hierarchically 
organised and they autonomously provide low-level 
and high-level information. Finally, the deliberative 
layer understands commands given by the user and 
controls the topological map generation. This paper 
has been organized as follows: Section 2 contains a 
brief description of related work. Section 3 presents 
the proposed hybrid architecture. Section 4 describes 
an object-oriented framework that has been 
developed to support the architecture. Finally, section 
5 summarises conclusions and future work. 
 
2   Related work 
It is widely recognised that hybrid architectures are 
the most efficient ones, and there is general 
agreement on basic architectural principles [12]. 

Thus, the layout of the first implementation of a 
hybrid approach, the AuRA architecture [1], matches 
very well the three-layer decomposition of the typical 
hybrid architecture. AuRA was specifically designed 
for operation on a platform that carries out 
navigational tasks and has a hierarchical system for 
mission planning, a plan sequencer and a behaviour-
based reactive layer. The mission planning layer is 
only activated when any contingency arises during 
the reactive layer execution. The XAVIER [15] and 
RHINO systems [3], developed later at CMU and 
Bonn University, respectively, follow the same 
guidelines. 
Hybrid architectures that also correspond very well to 
the three layer decomposition are the 3T [5], the 
BERRA and the LAAS [6]. These architectures 
present well-defined deliberative, task execution and 
reactive layers. Perceptions are mainly grouped in the 
reactive layer. Therefore, they are directly controlled 
by the highest level of the architecture but not the 
other way around. That is, the response of perception 
modules is taken into account only when the 
deliberative layer decides.  
It is worth noting that commercial platforms do not 
provide control architectures to achieve the desired 
level of autonomy [12]. For instance, Saphira is not 
organised in terms of layers. It represents the robot 
environment   in a symbolic   frame    called    Local 
Perceptual Space (LPS) and sends this information to 
each module in the architecture, regardless of their 
temporal or data abstraction level. Besides, there is 
no route planning, which means that the robot can 
only navigate to a point immediately accessible from 

 
 

Fig. 1. Overview of the proposed architecture 
 



the current position. Another example of a 
commercial architecture with no real deliberative 
layer is Teambots. Recently, ActivMedia Robotics 
has developed the ActivMedia Robotics Interface for 
Application (ARIA). This object-oriented software 
represents an important tool that takes advantage of 
its hardware abstraction and its capabilities to run 
cooperative behaviours. 
In general, hardware abstraction is well handled in 
these architectures, but there are no interactive tasks, 
meaning there is only a low level of autonomy.  
The architecture described in this paper is built over 
ARIA. In order to achieve the desired autonomy, we 
have to design new abstractions for high level 
concepts such as those required by reactive and 
deliberative layers. Thus, through ARIA, sensors 
supply their data to modules which extract higher 
order data. This information will be inserted into 
more elaborate perceptions by using an active 
perception strategy, which will be described in the 
next section. Therefore, the proposed architecture 
presents well-defined deliberative and reactive layers, 
which are in some way portable to other platforms.  
 
 
3 Components of the architecture  
The proposed system is based on perceptions, where 
stimuli are the key issue in the robot behaviour. In 
order to achieve autonomous behaviour in a dynamic 
environment, while the robot is carrying out a 
specific task, it must be capable of perceiving its 
environment and reacting to changes. There are 
different ways to implement the perception 
mechanism, based on the environment link, such as 
for example anchoring [14]. 
The architecture (see Fig. 1) is organized from the 
sensors up to the deliberative level. Perceptions are 
split into a set of modules that represent different 
stimulus and are organized in two levels: primitive 
and compound perceptions. The reactive layer is 
behaviour based, consisting of separate behaviours, 
where each one is designated a specific non-complex 
task in order to reach a target avoiding unexpected 
obstacles. The deliberative layer generates a symbolic 
environment representation (topological map), which 
is built from the perceptions outcome. On this layer, 
one part is dedicated to building this representation 
while the other two parts maintain the targets for 
accomplishing the task. Both layers have been 
developed following a new object-oriented 
framework in C++ that covers the functionality and 
interactions needed by each module. This framework 
is heavily based on common design patterns [4], and 
will be introduced in section 4. 

 
 
Fig. 2. Details of the mobile platform 
 
Regarding hardware, our platform is based on a 
Pioneer AT from ActivMedia, equipped with two 
cameras mounted on a Direct Perception’s Pan and 
Tilt Unit (PTU), eight front sonar sensors, a GPS and 
a compass. It includes two embedded PCs, one of 
which is exclusively dedicated to vision purposes. 
Experiments have shown that this platform can work 
correctly in indoor environments [16] or outdoors 
[17][19]. Fig. 1 shows a schematic layout of the 
platform. 
The following subsections describe the main 
characteristics of the layers in the proposed 
architecture. We focus on the details of the perception 
module, which has been designed to work in an 
autonomous and active way. From a functional point 
of view, the other part of the reactive layer (called 
action module in Fig. 1) and the deliberative layer are 
more similar to those present in other architectures, 
so they will be only briefly described. 
 
3.1 Active perception module 
To model perception as an active process means that 
perception is goal-directed and context-sensitive at 
every stage, including at the initial processing of 
input sensory data. Thus, active perception processes 
all data in a goal-directed manner and it greatly 
decreases the computational cost of perception 
because the system applies only specific 
computational resources to chosen parts of the 
sensory data. Therefore, active perception requires 
forming sensory plans from the information gathered 
by the robot from its environment, and transforms 
perception into a problem-solving process. This 
permits the robot to apply its learning capabilities to 
its perceptions. In order to perceive actively, the 
proposed architecture has access to lower-level 
sensory and motor information. Thus, it implements 
modules for landmark acquisition and localization 
and map building in indoor or outdoor environments. 



 
Fig. 3. Landmarks detected in different environments 
with: a-d) the visual attention mechanism, and e-f) 
line-segment/corner extraction (laser scan) 

A. Autonomous landmark detection 
The perception primitives (the lowest level of sensory 
representation) are composed of the localization 
module and two landmark detector modules. The 
line-segment map and the attention mechanism are 
based on landmark detection. These landmarks are 
the way to model the robot environment and are the 
key point for the feature maps built into the higher 
level of perception. 
The type of landmarks depends on the sensor and the 
process used to acquire them. In [17] a visual 
landmark acquisition is presented. The proposed 
attention mechanism integrates bottom-up and top-
down processing, selecting salient regions by 
computing different image features. Fig. 3a-d shows 
several examples of autonomous landmark 
acquisition. It should be noted that landmark 
detection is correctly achieved in indoor and outdoor 
environments. 
 Indoor environments present regular geometry (walls, 
corners, doors, etc). In order to take advantage of this 
information range bearing sensors can be used to 
extract these environmental features. Line-segment 
maps can be extracted from sonar [13] and laser scans 
[10]. Besides, due to the higher precision of the laser 
range-finder, it is possible to use a curvature based 
method to extract corners [10]. Figs. 3e-f present two 
scan data collected in an indoor environment. The 
laser scan range readings have been presented above 
the real layout. 
 
B. Local Simultaneous Localization and Mapping 
A mobile robot that has to embed autonomous motion 
abilities must necessarily be endowed with 
localization capabilities. In order to provide robust 
localization, an autonomous robot must integrate 
several methods, each of them fulfilling a particular 
requirement [8]. In our case, odometry computes 
positions thanks to the integration of the robot 
wheels’ velocities. This position measure is prone to 
unbounded drifting, due to slippage and mechanical 
imprecision which provoke accumulative errors. 
These problems are even worse in outdoor 
environments, where the ground is not necessarily 
flat, but usually rough, and paths may be quite long. 
To obtain an accurate estimation of the robot pose, a 
GPS is used to provide an outdoor absolute position 
and a compass is used to refine the orientation pose 
[19]. GPS provides good accuracy in the position, but 
its availability depends on the environmental 
conditions (satellite signals can be blocked by 
buildings, trees, sources of electric and magnetic 
fields, etc) and it can only be used outdoors. In order 
to achieve an accurate and continuous estimation of 
the robot’s position, a simultaneous localization and 



map building process (SLAM) [18] is used. Vision is 
employed to provide indoor and outdoor landmarks 
while sonar or laser sensors provide only indoor ones. 
The SLAM process is based on a features map. This 
map is built with the information provided by the 
corner-extraction/line-segment module or visual 
attention mechanism. The size of the feature map 
increases with the number of observations (2N+3). In 
large and/or dense environments these maps can 
reach a huge size, which means high storage and 
computational cost. In order to avoid these problems, 
a partial or local SLAM is used. Partial SLAM is 
based on removing from the state all the landmarks 
outside a local map around the current robot pose. 
The size of this local map is set based on the sensory 
horizon of the robot. Partial SLAM provides the robot 
pose and local landmark localization while the 
solution for the large-scale space representation and 
the closing of large loops (large-scale structural 
ambiguity) are postponed to the topological map. 

 
Fig. 4. a) Full and b) partial SLAM 
 

Fig. 4 illustrates the difference between full SLAM 
(Fig. 4a) and partial SLAM (Fig. 4b). It can be 
observed that the uncertainty (red ellipses) in the 
vehicle pose and the landmark locations are higher in 
partial SLAM, due to the reduction when previously 
detected landmarks are observed again. In the case of 
partial SLAM this fact is less likely, but the 
uncertainty does not increase significantly. 
Our approach implements two SLAM algorithms, one 
for indoor environments and another one for 
outdoors. The correct reception of GPS signals and 
the obstacle density are employed to detect indoor or 
outdoor environments. The SLAM manager shown in 
Fig. 1 decides which SLAM algorithm is more 
suitable to the robot environment.  
 
3.2 Reactive navigation 
As explained before, the reactive layer is split into 
several modules. The action module is implemented 
as behaviours and their outcomes are combined in 
order to select the desired action of the robot. 
Firstly, an action called safe navigation stops the 
robot when the motors stall (there are no bumpers 
available to detect collisions). In order to navigate in 
dynamic environments, a behaviour that avoids 
obstacles is needed. Although different techniques 
can be used, the Obstacle Restriction Method has 
been implemented [9], because it obtains better 
results in dynamic environments. This behaviour 
maintains the goals that are passed by the deliberative 
layer and the wandering behaviour is used when there 
are no specific goals and the robot is exploring the 
environment. 
 
3.3 Deliberative and task execution layer 
Metric maps are not suitable for representing large-
scale environments but provide a high degree of local 
accuracy and quantify uncertainty. On the other hand, 
topological maps provide a natural division of the 
environment, low computation and storage, large-
scale connectivity and consistency. The strengths of 
topological and metric maps are complementary. 
Thus, many approaches that combine both paradigms 
exist [7].   These    maps   can    be    considered    as 
topological representations based on information 
from local or global metric maps. 
Local metrical mapping is based on the partial 
SLAM, which provides metric information on the 
robot’s surroundings. The topological map describes 
the environment with a set of nodes (places) linked 
by edges (connecting paths). These nodes represent 
places that satisfy several conditions, for example 
areas with a high density of landmarks (SLAM) or 
interesting views (based on image features). The 
selection of these conditions is a key issue, due to 



 
Fig. 5. Parts of the UML Perception module 
 
the consistency of the map building process. At this 
level of representation the navigation problem is 
solved with a path-planning method to find a path in 
a graph, in this case the A* algorithm. 
 
4 Implementation details 
The architecture proposed in this paper has been 
implemented using a new object-oriented framework 
in C++. In the design of the framework we have 
taken into account all the high level abstractions 
needed by the reactive and deliberative layers. For 
instance, Fig. 5 depicts part of a UML class diagram 
[11] corresponding to the active perception module, 
which provides the required infrastructure to 
encapsulate and manage different sensor 
measurements. The abstract Perceptor class is the 
base class for all perceptors (primitive and 
compound) in the framework. It includes basic 
mechanisms to get data from the robot’s sensors and 
to register PerceptorListeners. This are subscribers 
that will be warned when new data is available. Fig. 5 
shows the relationship between Perceptors and 
PerceptorListeners though a DataEvent object, which 
contains appropriate references to the caller and to 
the data available. Therefore, perceptions can be 
hierarchically organized, providing low-level and 
high-level information. Regarding specific 
perceptors, such as the wrappers for localization 
(GPS), line segment/corner extraction (laser), or 
SLAM, these are all singleton objects which have 
only one active instance in the system. The role of the 
SLAMPerceptorManager class also shown in the 
figure is that of deciding what the robot environment 
is, according to the results obtained by inspecting 
SLAMIndoors and SLAMOutdoors perceptor objects. 
Following the recommendations in our framework, 
complete use cases are built with few lines of code, as 
shown in fig. 6, where it is demonstrated how easily 
the hierarchical connection of perceptors is 
performed. First of all, the hardware-based 
LaserPerceptor and GPSPerceptor objects 
  

 
     
 
int main(int argc, char *argv[])     
{ 
  
  LaserPerceptor* lp = LaserPerceptor::getInstance(); 
 
  GPSPerceptor *gpsp = GPSPerceptor::getInstance();   
 
 //registering the hierarchy: laser for indoors 
 
  SLAMIndoorsPerceptor slamindoors; 
  lp->connect(&slamindoors); 
 
//registering the hierarchy: GPS for outdoors 
 
  SLAMOutdoorsPerceptor slamoutdoors; 
  gpsp->connect(&slamoutdoors); 
 
//The manager will decide the appropriate environment 
 
  SLAMPerceptorManager slam_manager; 
  
  slamindoors.connect(&slam_manager); 
  slamoutdoors.connect(&slam_manager); 
 
  //Robot execution main loop 
 
  Robot::getInstance()->run(argc, argv); 
 
  return 0; 
} 
 
 
  
Fig. 6. A simple use case of the perception module 
 
(wrappers for available laser and GPS) are connected 
to their corresponding SLAM algorithms. Note that 
these algorithms for outdoors and indoors locations 
may be possibly executing in separate threads (also 
decoupled of the robot execution main thread).  
Regarding hardware-based perceptors, they are 
already available in the ARIA library. Our 
architecture provides the relationship among these 
primary (or basic) perceptors and a running Robot 
instance. For instance, code in fig. 7 shows the 
behaviour of the LaserPerceptor class. The 
connectToRobot method will be called from the 
Robot singleton instance in order to encapsulate the 
low-level procedures followed by ARIA. One of the 
most important tasks is to register a callback function 
to be executed when new laser data is available. 
Therefore, the newData method is responsible of 
notifying these data to those perceptors which were 
previously subscribed. 
Another important concept in the framework is the 
possibility of having distributed perceptors. The 
RemotePerceptor class is prepared to act as a server  
 



 
 
LaserPerceptor::LaserPerceptor() 
{  
  //wraps the ARIA laser 
  laser = new ArSick(); 
  laser->configure(   

false,true,false,ArSick::BAUD38400, 
ArSick::DEGREES180,  
ArSick::INCREMENT_HALF);  

} 
 
void LaserPerceptor::connectToRobot(Robot *robot) 
{ 
  functor1 = new ArFunctorC <LaserPerceptor> 
   (this,&LaserPerceptor::newData); 
  laser->addDataCB(functor1,ArListPos::FIRST); 
  robot->connector.setupLaser(laser); 
  laser->runAsync(); 
  Logger::log("laser setup ok");   
 
... 
 
  if (laser->getDegrees()==ArSick::DEGREES180) 
  Logger::log("degree Range: 180º"); 
  else  

Logger::log("degree Range: 100º"); 
  if (laser->getIncrement()==ArSick::INCREMENT_ONE) 
  Logger:log("1º deg inc"); 
  else  

Logger::log("0.5 deg inc"); 
} 
 
/* 
The newData callback function is executed when new 
data from laser is available in ARIA 
*/ 
void LaserPerceptor::newData() 
{ 
 
  std::list<ArSensorReading *>::const_iterator myit; 
 
  static ArTime mylast; 
  ArTime mynow; 
  long int timeelapsed; 
   
  mynow=laser->getLastReadingTime(); 
  timeelapsed=mylast.mSecSince(mynow); 
 
  if (timeelapsed > 0){  
    mylast=mynow;  
    readings = laser->getRawReadings(); 
    DataEvent devent(this); 
    sig_subscribers(devent); 
  } 
} 
 
LaserPerceptor::~LaserPerceptor() 
{ 
    laser->remDataCB(functor1); 
    delete functor1; 
    delete laser; 
} 
 
 
Fig. 7. The LaserPerceptor behaviour 

 

 
Fig. 8. Class diagram of Deliberators and Actions  
 
that gets network data using TCP/IP sockets. In our 
mobile platform, it is very useful to offer load 
balancing among different PCs. With our approach 
(see Fig. 1) one processor is responsible for 
computing image inputs from cameras, a resource-
expensive task, whereas the other processor contains 
the deliberative and reactive layers built over ARIA. 
Therefore, the image data from cameras is 
reconverted to regions of interest, which are sent to a 
specific ImagePerceptor derived from a 
RemotePerceptor, giving objects in the architecture 
the possibility of accessing those data with the 
minimum delay (by using UDP datagram sockets). 
 Although this paper has focused on the perception 
part of the control architecture, we are now 
implementing the functionality requested by the 
deliberative layer. Fig. 8 shows the features available 
in the framework for organizing high level tasks 
through so-called Deliberator objects. Their default 
implementation contains state machines to represent 
the behaviour corresponding to a deliberative task. 
State, Transition and an EventQueue are classes 
which compose each state machine. Transition (and 
State) classes may contain ordered sequences of 
Action objects, which are executed only when they 
are active, that is, when a specific DataEvent has 
been received. Regarding Action classes, they 
implement the command pattern, acting also as a 
wrapper for platform-dependent actions, like the ones 
available within the ARIA platform, as shown in Fig. 
6. 
The design of this framework provides clear 
extension options for developers in our group so that 



they may provide their own implementations of new 
Perceptors, Actions and Deliberators as needed. 
 
5   Conclusions and future work 
This paper describes a hybrid architecture for a 
mobile robot that allows perceptual processes to 
control themselves and achieve more balanced 
control between reactive and deliberative layers. We 
have introduced its main components focusing on the 
active perception module, which has a critical role 
with respect to robot operation. It provides a 
hierarchy of autonomous perceptions that convert 
low-level information into high-level data. We have 
also presented a framework for implementing the 
functionality needed by reactive and deliberative 
layers. The aim of this framework is not only to 
reduce the development time but also to provide 
platform-independent high level abstractions of the 
components in the architecture. Work in the 
immediate future consists of obtaining new 
Perceptors for the vision mechanism, in order to 
recognize nodes in a topological map. This will 
constitute the basic support for an ongoing path-
planning task, which will improve the implemented 
algorithm. 
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